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Abstract 

The exact effects of three initial conditions - time lag, burst release, and steady state concentration profile - on 
drug release from a coated spherical matrix containing dissolved drug into a finite amount of well stirred elution 
liquid have been analyzed. The degree of the effect of initial conditions on drug release depends on the diffusivity 
ratio of coating layer to core matrix and the radius ratio of the coated particle to the core. For the case where drug 
concentration in the core is dependent on time only, the differences between the exact and the pseudo-steady state 
solutions are computed, therefore, pros and cons for the pseudo-steady state solution, which is simple and direct, 
can be anchored on exact comparison. 
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1. Introduction 

A reservoir-type controlled release particle consists of a core and coating. The core may be a pure 
solid drug, a matrix with dissolved drug, or a matrix with dispersed drug. The coating can be of different 
material and thickness. Drug release from a particle then depends on the drug, the core, the coating 
characteristics, and the environment into which the drug is released. 

One of the conditions that is always present in the problem of drug release is the initial condition. For 
particles that are put to drug release soon after the completion of coating, the drug concentration in the 
coating is negligible and time will be taken to establish a concentration profile in the coating layer. This 
is the time lag problem. For particles that are either stored for a period of time or fabricated at elevated 
temperature, the coating layer may become saturated with drug and thus the initial drug release rate will 
be very large. This is the burst release problem. Analytical solutions for several problems of drug release 
from a coated particle containing dissolved drug are available in the literature. For example, exact 
solutions for the time lag and burst release problems each with the conditions of constant drug 
concentrations at both surfaces of the coating layer have been given by Carslaw and Jaeger (19.59); exact 
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solutions for time lag problems with the conditions that drug concentration in the core is time dependent 
but space independent and that the elution liquid is either finite or a perfect sink have been provided by 
Christensen et al. (1982); and exact solutions for time lag problems with the conditions that drug 
concentration in the core is time and space dependent and that the elution liquid is either finite or a 
perfect sink have been given by Lu and Chen (1993). Time lag and burst release problems with the 
conditions that the drug concentration in the core is constant and that the elution liquid acts as a perfect 
sink have been reviewed by Baker and Lonsdale (1974) and Good and Lee (1984). A matter of present 
concern is then the exact extents of the effects of different initial conditions on drug release. Such exact 
comparison has not been made so far. Knowing exact answers to the problems may be important when 
questions regarding the initial dosages arise. 

In contrast to the exact solutions cited above, an approximate solution for drug release from a coated 
pure drug bead has been solved by Lu and Lee (1992) using pseudo-steady state assumption. Lu (1994) 
generalized the above solution by introducing dimensionless variables and parameters into the problem. 
The results were then modified to the cases of time lag and burst release. A matter of present concern is 
how the initial condition and particle conditions interact on the exact difference between the pseudo- 
steady state solution and the exact solution. A preliminary comparison has been made for the time lag 
case (Lu, 1994). It appears that a thorough comparison, if made available, will provide precise 
information for the interaction of initial conditions and particle condition on drug release. 

The purpose of this paper is to provide exact answers to the questions raised above. First, the release 
of drug from a spherical coated particle containing dissolved drug and releasing drug through a stable, 
permeable, and non-swelling coating layer into a well stirred elution liquid of a given volume is analyzed 
exactly for different initial conditions. The effects of initial conditions and particle conditions on drug 
release are then compared. Second, for the case that drug concentration in the core is dependent on 
time only, the pseudo-steady state solutions and the exact solutions are compared for different initial 
conditions and particle conditions. 

2. Problems and basic equations 

Drug release from a coated particle of radius a containing a core of radius b is considered. The core 
is either a pure dissolved drug or a matrix with dissolved drug. Drug release takes place in a well stirred 
elution liquid of volume V,. The basic dimensionless equations for the core matrix and for the coating 
layer are as follows 

~ = ~2Wm) a(77%l) 
a7 aT2 ’ 

O<q<l, (Ia) 

a(@,) = D a2wv 
a7 

~ l<v<l. r aq2 ’ 

The dimensionless quantities in the above equations are defined as follows 

(lb) 

(20,c) 

(X0) 
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Fig. 1. Initial conditions. 

where 8 and C denote, respectively, the dimensionless concentration and concentration of drug, with 
subscripts m, f, and e representing the core, coating, and elution liquid. C, is the initial loading 
concentration of drug in the core. D, denotes the ratio of drug diffusivity in coating layer, D,, to that in 
the core matrix, 0,. V, is the volume ratio of the elution liquid to the particle. n is the dimensionless 
radius and 1 the radius ratio. 

Initially, the particle is in the following conditions 

&(17,0) = 1, (3a) 

%(174) =%+I)~ (3b) 

e,(o) = 0, (3c) 

where Of,$n) represents the initial drug concentration profile in the coating layer. According to Fig. 1, 
t$a(n) are expressed by: 

IC I, time lag case: e,,o(77) = 0 (44 

IC II, burst release case: 8,,,( 7) = l/K, (4b) 

IC III, SSCD case: Bf,a( 7) = (I - n)/[ K,n( 1- l)] (Jc) 

where IC denotes initial condition and SSCD represents the steady state concentration distribution. 
SSCD is a case setup for investigating the effect of the method of solution (exact vs pseudo-steady state) 
on drug release. 

The boundary conditions are: 

e,(o,7) is finite, (5a) 

K,e,(l,T) = e,(I,+ (5b) 

K,e,(w = e,(T), (54 
v,l ae, --- 

30, a7 . (54 

K, and K, are the partition coefficients which are assumed to be constant. 
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3. Solutions 

The solutions are presented as follows. Sections 3.1-3.3 show exact solutions for IC I, II, and III. 
These exact solutions are reduced to the case 0, z+ D,, i.e., D, -+ 0, in section 3.4. In section 3.5, for the 
purpose of comparison, the pseudo-steady state solutions from Lu (1994) are rewritten in terms of the 
notations used in this work. 

3.1. Exact solutions for IC I, time lag case 

Solutions for this case have been given by Lu and Chen (1993). For the sake of completeness, they are 
listed in the Appendix. 

3.2. Exact solutions for IC II, burst release case 

The method of solution used is analogous to that used in section 3.1. Exact solutions are shown below. 
The dimensionless concentrations are: 

%417>7) = 
K,+13-1 I/,K,i’ co 

K, + Z3 - 1 + V,KJ3 
+p 

3 c P,sin(~P,+w( -DA?) 
(6a) 

n=l 77f(PJ ’ 

K,+l”-1 

ef(77’7) = K,(K, + 1’ - 1 + v,K,13) + 

VcK,13 m 
-c 

ew( -D,P?) 

3KLP, n=i 77f(Ptl) 

.{ [ h@J%cos(~~P,) + Pr - hW(~B,)]sin[(~ - l>P,] 

+QP,sin(~~&)cos[(~ - W,])~ 
Ka( K, + 1” - 1) VK212 co 

‘%(‘) = Kb( K, + l3 - 1 + V,K,13) + --L 
3&D, n = I 

exp( -D&T) 

f(PJ 

(6’3) 

. ([ %&P,cos(&Bn) + (or - K&i~(~P,)]~WP,) + D~p,sin(~p.)cos(GPn)). 

(6c) 

Fractional cumulative release and dimensionless release rate are: 

O” 
F(T) = 1+ 

K,VJ2( K, + l3 - 1 + K,V,13) 
c 

exp( -D&T) 

3D,( K, + Z3 - 1) n=l f(P,) 

. ( [ K,q%P,cos( /qP,) + ( Q - K, W( i%P,)] sin( WJ + QP,sin@A)cos( VJ) y 

(7a) 

R(r) = 
-K,V,l’( K, + Z3 - 1 + K,VJ3) 

3( K, + 1” - 1) 
f: P%xp( -D,P,“T) 

n=l f(h) 

.( [ K,~B,cos(~P,) + (4 -K,)sin(~P,j]sin(6P,,) +D,P,sin(~~.)cos(~P~)). 

PI 

f<P,> and p, in the above equations are found by Eq. A3 and A4. 
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The above solutions are checked by reducing the equations to a special case for which the solution is 
available in the literature. The special case used is that core matrix and coating layer are completely the 
same, i.e., D, = 1, and K, = 1. This is the case of a particle without coating. The fractional cumulative 
release for this special case is found as 

F(r) = Eq.7aln~=1,K,,I = 1 - 
YUl$- WJ Cc 

, 

where p, are the non-zero roots of the following equation which is reduced from Eq. A4 

1+ 1 sin(lp,) -1/3,cos(f/3,) = 0. 

(8) 

(9a) 
By writing q, = LB, and cr 3 I/,K,/3, the above equation is rewritten as: 

39, 
tan(q,) = ~ 

3 +(rq,2’ (9b) 

Eq. 8 is rearranged into the following form by dividing both the numerator and the denominator of 
the second term on the right-hand side by cos(l/3,,) and by substituting into it the expression for tan(q,,) 
in Eq. 9b: 

51 
F(7)=1- c 

6c~( 1 + a)qtexp( -qiT/1*) 

n=l 9+9cu+dq,2 . ( 10) 

This is the equation of fractional cumulative release for an uncoated spherical matrix releasing drug in a 
finite volume of well stirred elution liquid. Eq. 10 and 9b agree with Eq. 6.31 and 6.30 of Crank (1975). 

3.3. Exact solution .for IC III, SSCD case 

This case is different from the pseudo-steady state solution to be discussed in section 3.5 in that steady 
state concentration distribution exists only initially while the latter assumes a steady state concentration 
profile in coating layer at any instant throughout the release of drug. To determine the difference 
behveen the pseudo-steady state solution and the solution of the present case for which an analytical 
solution is unknown, this case is solved by using the method analogously to that used in section 3.1. The 
expressions for drug concentrations are found as follows 

k(777) = 
K, - 1 +Z(I+ 1)/2 1 a exp( -D,p,‘T) 

K,+13-l++KJ3 +gc 
n=l rlPkf(PJ 

. [P, + (1 + V, KJ2Pi/3)sin( W,> - Rcos( W, I] sin(v%P,,v), 
K/,-1+1(1+1)/2 

“(n”) = Kb( K, + I” - 1 + v,K,Z3) + 

( 114 
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K,(K,-l+Z(Z+1)/2) K, 

“(” = Kb( K, + Z3 - 1 + v,K,Z3) + 
m exp( -DA?) 

--c 
KbDr6 n=l PLf(PJ 

.{[D,sin(/&.LJ,) +Kb(~P,,c-(&P,) -sin(y~~~,)))]~in(~~ 
+D,P,,sin( @P,)coS( GL> - ZDrP,$n( /&P,,)}. (llc) 

The equations for fractional cumulative release and dimensionless release rate are as follows: 

K, + I” - 1 + I/,K,Z3 

F(T)=1+ sD,(K,-l+Z(Z+1)/2) n=l 

* ([ D,sin( &P,) + Kb( &P,cos( :0,&j - sin( PA))] W%J 

+D,B,sin( /%P,)cos( W,> - QB,,sin( n&j) j 
Kb+Z3-l+I/,K,Z3 m exp( -D,P,‘r) 

R(r) = 6(K, - 1 + Z(Z + 1)/2) n=, c 
f(A) 

- 
. { [ D,sin( & P,) + Kb( &&coS( :o,&) - sin( y’D,B,,))] sWV%) 

+D,P,Sin(@A)W W,) - WLsin( fiP,)). 
f@,> and p, in the above equations are found by Eq. A3 and A4. 

( -1 

( 12b) 

3.4. Exact solutions for IC I, ZI, III with D, -+ 0 

When D, B D,, then D, + 0, drug release is controlled by the coating layer and drug concentration 
in the core may be taken as time dependent and space independent. A new dimensionless time, rr, 
defined by 

rf = D,t/b’ = 0,~ (13) 
was used to eliminate D,,, from the problem. Then F’(rf), i = I, II, III, exact fractional cumulative 
release for IC I, II, III with D, + 0, were derived respectively from Eq. Al, 7a and 12a. The results are: 

Fl(~f) = [Eq.Al]o+o = 
m P,exp( -P,27f) 

1+(K,+Z3-l+fK,Z3) c 
n=l 3N(PJ ’ 

Fu(7r) = [Eq.7a]Dr+o = 1 - 
I/,K,Z2(K, + Z3 - 1 + 1/,K,Z3) m exp( -&rr) 

Kb+Z3-1 c 
n=i 3N(P,) 

’ [ (1 - &,@;/3)sin(&%) + &co+%)] > 

F,,,(T~) = [Eq.12alDr,o = 1 - 
K, + Z3 - 1 + I/,K,Z3 m exp( -&rf) 

c 
k, - 1 +Z(Z+ 1)/2 n=t 6P,2N(P,) 

. [ (I- KbP?/3)sin( V,) + P,W W,) - @,] T 

( 14a) 

( 14b) 

( 14c) 
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where 

12+ 1 V,K,I’ K, KJS V, K,12S 21/,K,K,12 
2+~---- - 

3 6+6+ 9 (Isa> 
and p, are the non-zero roots of Eq. A4 at the limit, i.e., 

cos(WJ 
Kbl VTK,12 
3 + y-- 

(15b) 

3.5. Pseudo-steady state solutions, D, + 0 

For this case C, is dependent on time only. One such case is a coated pure drug bead releasing drug 
in a given amount of well stirred elution liquid. For this problem, Lu (1994) presented a pseudo-steady 
state solution in dimensionless form using dimensionless groups Y, Xi, X, p, s, p,/C, which are defined 
in the Nomenclature. The case of present concern is that the initial loading concentration of the 
dissolved drug is equal to the saturation concentration of the drug and that the elution liquid is pure 
initially. Then, by setting p,/C, to 1, the dimensionless cumulative release, Y, by pseudo-steady state 
solution is (Lu, 1994): 

S 
Y= 

P(S + 1) [ i 

1 -exp - OpXI , 
S 11 (16) 

where Xi =X+ m and m = -l/6, a/(36), 0 for IC I, II, and III. As F = Y/Y,, and Y, = 
[s(p,/C,)]/[p(s + l)] (Lu, 1994), Y and F are related by the following equation 

Also, from the definition of X, X and rf are related by 

Thus, Eq. 16 written in terms of F, T*, m is 

4,,s,s,,(~~)=l-exp - 3(Kb’KK’z3) (T,+mK,(l-1)') . 
I/,K,K,Z’(I - 1) 1 

(174 

(18) 

Subscript (P.S.S.),, i = I, II, III, represents solutions obtained by pseudo-steady state approach for initial 
conditions I, II, and III. 
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Table 1 
The equations used for the figures 

Figure Legend Equation no. for 

2-5 

6, 7 

I 
II 
III 
I 
II 
III 
P.S.S. 

F 

(Al) 
(7a) 
(12a) 
(14a) 
(14b) 
(14c) 
(18) 

R 

(A21 
(7b) 
(12b) 

4. Results and discussion 

The following results and discussion, unless otherwise noted, are based on V, = 100, K, = 1 and 
K, = 1. For convenience, the equations used for each figure are tabulated in Table 1. 

Fig. 2 shows the exact effects of three IC on fractional cumulative release, F, for a/b = 1.1. For any 
D,, F of the time lag case is the smallest and burst release the largest. The effect of IC on the F curve is 
dependent on the magnitude of D,. The effect is negligible when D, is large (core matrix controlling 
drug release). When D, is small (coating layer controlling), the IC effect is substantial up to a greater 
value of 7. The effect, in any case, decreases as -r increases. 

Fig. 3 shows the exact effects of three IC on dimensionless release rate, R, for a/b = 1.1. The IC 
effect similar to that shown in Fig. 2 is also observed for the release rate R. For any Q, the initial rates 
are in accordance with the initial conditions, i.e., for the time lag case, the rate is zero initially and the 
rate increases to a maximum and falls; for the burst release case, the initial rate is infinite and the rate 
decreases monotonically with time; and for SSCD, the initial rate is finite and at the maximum but then 
decreases with time. R curves of the same D, converge at large 7 and the convergence occurs late when 
D, is small. The extent of the effect of initial condition is, therefore, dependent on D,. 

Fig. 4 and 5 show, respectively, the the exact effect of IC on F and R for different a/b and for 
D, = 0.1. When a/b is large, the effect of IC becomes substantial. The effect in any case, however, 

0.6 

F 

0.4 

0.0 
00 0.2 0.4 06 0.8 1.0 

T 

Fig. 2. The exact effect of initial conditions on fractional cumulative release, for various D, and a/b = 1.1. K, = K, = 1, V, = 100. 
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Fig. 3. The exact effect of initial conditions on dimensionless release rate, for various D, and a/h = 1.1. K, = K, = 1, V, = 100. 

decreases as r increases. Fig. 5 shows that as a/b increases, the IC effect on R persists to a greater 7, 
and that R for the time lag case eventually surpasses the others. In Fig. 4 and 5, as D, = 0.1, the coating 
layer is in control of mass transfer. Therefore, with the increase in a/b, the effects of coating layer 
thickness and IC become more apparent. 

Fig. 6 shows fractional cumulative release curves for D, + 0. The abscissa is in or. For each a/b, five 
F curves are shown, three for exact solutions with IC I, II, and III, and two for pseudo-steady state 
solutions with IC I and II. The differences in the five F curves increase as a/b increases but decrease as 
7r increases. 

Fig. 7 shows the relative percentage difference between the exact and pseudo-steady state solutions 
for three IC, three u/b, and 0, -+ 0. The relative percentage difference is defined in the title of the 
ordinate. Fcp,s.s,j is the pseudo-steady state solution given by Eq. 18 and F, denotes the exact solution for 

0.6 

0.0 02 0.4 06 0.8 1.0 

5 

Fig. 4. The exact effect of initial conditions on fractional cumulative release, for various a/b and D, = 0.1. K, = K, = 1, V, = 100. 
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00 0.2 0.4 0.G 0.8 1.0 

z 

Fig. 5. The exact effect of initial conditions on dimensionless release rate, for various a/b and D, = 0.1. K, = K, = 1, V, = 100. 

IC i, i = I, II, III. In the abscissa, rf,99 represents TV at F = 0.99, thus, nearly the entire release life is 
covered. This figure shows that within about 5% time of life expectancy, the relative difference and its 
change with time are large in any case. After about 5% time of life expectancy, it may be said that: (1) 
relative differences for all cases decrease smoothly with time: (2) for a given a/b, the effect of IC on the 
relative difference becomes negligible, i.e., relative differences are about the same for the same a/b; (3) 
as a/b decreases, the relative difference decreases; and (4) relative differences are at most around 16, 8, 
and 4% for a/b = 1.2, 1.1, and 1.05, respectively. a/b z 1.1 may be taken as the criterion for the 
application of pseudo-steady state solutions. It should be borne in mind, however, that the above 
discussions are based on V, = 100, K, = K, = 1. For V, = 10, K, = K, = 1, results that are not much 

F 

1 

08 

06 

04 

02 

0 1, :i/, / , , / / , , 
0 0.02 0.04 0.06 0 08 0.1 

Tf 
Fig. 6. Fractional cumulative release curves obtained by exact solutions and by pseudo-steady state solution for different initial 
conditions. D, + 0, K, = K, = 1, V, = 100. 
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(I 02 04 06 OX 1 

df,!x 

Fig. 7. Relative percentage difference between exact solutions and pseudo steady state solutions. For time lag, burst release, and 
SSCD. Q-0, K,=K,=l,V,=lOO. 

different from Fig. 7 were obtained. In the case V, << 10, i.e., a particle in a very small volume of liquid, 
the relative differences will be somewhat greater than those indicated by Fig. 7. 

5. Conclusions 

Drug release from a coated spherical particle containing dissolved drug has been analyzed exactly for 
time lag, burst release, and steady state concentration distribution in coating layer. The degree of the 
effect of initial conditions on release behavior is dependent on diffusivity ratio, D,, and radius ratio, a/b. 
The effect of initial condition is sustained over a longer time for particles with small diffusivity ratio and 
large radius ratio. 

For the case where drug concentration in the core is dependent on time only, pseudo-steady state 
solutions are compared with the exact solutions. The relative difference between the two is dependent on 
a/b. Excepting the cases of very small V, and very small time, Pseudo-steady state solution is considered 
to apply for a/b less than around 1.1. 

Nomenclature 

radius of coated matrix, cm 
radius of core matrix, cm 
concentration: i = m, f, e, for core matrix, coating, and elution liquid; i = 0, for initial drug 
loading concentration in the core matrix; i = s, for saturation concentration of drug; 
gmol/cm” 
diffusivity; i = m, f, for core matrix and coating, cm2/s 
diffusivity ratio, = D,/D,, - 
a function defined by Eq. A3, - 
fractional cumulative release, = MI/M,, - 
initial condition, 
partition coefficient, i = a, b. K, = C,(t>/C,(a,t); K, = C,(b,t)/C,(b,t), - 
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dimensionless particle size, = a/b; - 
a parameter, m = - l/6 for time lag case, m = a/(3b) for burst release case, m = 0 for 
pseudo-steady state case, - 
index, - 
amount of drug released at time t, gmol 
amount of drug released at infinite time, or M,,, gmol 
a function defined by Eq. 15a, - 
= 3(K,/K,)(a/b)(a/b - 11, - 
roots of Eq. 9b, = Ip,, - 
radius, cm 
dimensionless fractional cumulative release rate, dF/dr, - 
= (K,/Kb>Y(a/b>3, - 
steady state concentration distribution in coating layer, - 
time, s 
the time at which solid drug disappears, s 
volume of elution liquid, cm3 
volumetric ratio of the ehttion liquid to the coated matrix, = V,/(4ra3/3>, - 
= D, t/[ K,(a - bj2], - 
=X+m, - 
f M,/[4rab(a - b)C,(K,/K,)], - 
Y at t = t,, - 
= V,K,/3, - 
roots of Eq. A4, 9a, 15b, - 
dimensionless thickness of coating, = (a - b)/b, - 
dimensionless radius, = r/b, - 
dimensionless concentration: i = m, f, e, for core matrix, coating, and elution liquid; i = f,O, 
for initial drug profile in the coating, - 
= 3.1416, - 
density of pure drug, g/cm3 
dimensionless time, = D,t/b2, - 
dimensionless time, = Dft/b2, - 
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Appendix 

Exact solutions for time lag case (Lu and Chen, 1993) 
The dimensionless cumulative release, F(r), and the dimensionless cumulative release rate, R(T), are 

Iisted below. 

F(7) = 2 = 1+ 
K, + f3 - 1 + V,KJ3 m 

c 
exp( -0,&r) 

. [ PJVos( @P,) - sin( PA)] 9 
m D, n=l Prlf(PJ 

(Al) 
dF(T) 

R(T) = 7 = 
m P,ew( -Q&T) 

-(~,+l~-i+V,K,l~) C 
n=l f(&) 

. [v@KPJs(#TPn) - sin(& (A21 
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where 

f( P,> = sin(@T&)cos( W,) . 

Pn 

and p, are the non-zero roots of the following equation: 

K, [ {~&cos(@~,) - sin(,/qP,)l [ - @,cos( QtJ + sin( &%) + !$12B%( &% )] 

- D,sin(fi&) [ - (M,” + l)sin( W,) + W,cos( W,,) 

I/,K, 2 
- 31 p,2( P,cos( SP,) + sin( W,)) 

I 
= 0, 

where 6 = (a - b)/b = I- 1 is the dimensionless thickness of coating. 
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